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Abstract

Most of the work on vibration analysis of plates published in the literature are analytical and numerical
and very few experimental results are available. Existing modal analysis techniques such as accelerometers
and laser Doppler vibrometers are pointwise measurement techniques and are used in conjunction with
spectrum analyzers and modal analysis software to characterize the vibration behaviour. In this study, a
whole-field technique called amplitude-fluctuation electronic speckle pattern interferometry optical system
is employed to investigate the vibration behaviour of square isotropic plates with different boundary
conditions. This method is very convenient to investigate vibration objects because no contact is required
compared to classical modal analysis using accelerometers. High-quality interferometric fringes for mode
shapes are produced instantly by a video recording system. Based on the fact that clear fringe patterns will
appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be
obtained experimentally using the present method. Two different types of boundary conditions are
investigated in this study, namely free–free–free–free (FFFF, 27 modes) and clamped–clamped–clamped–
clamped (CCCC, 12 modes). The numerical calculations by finite element method are also performed and
the results are compared with the experimental measurements. Excellent agreements are obtained for both
results of resonant frequencies and mode shapes.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Holographic interferometry is an optical method for full-field and non-contact measurement of
object displacements. It opened new worlds of research by making global measurement of small
dynamic surface displacements in a two-step process for a wide variety of objects. Unfortunately,
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holograms were recorded on photographic films and the cumbersome process of film development
limits the application of holographic vibration analysis. Electronic speckle pattern interferometry
(ESPI) was first proposed by Butters and Leendertz [1] as a method for producing the
interferogram without using traditional film-based techniques. As compared with the traditional
holographic interferometry [2], the interferometric fringe patterns of ESPI are recorded using
video camera, which can eliminate the time-consuming chemical film development. Since the
interferometric image is recorded and updated every 1/30 s, ESPI is faster and more insensitive to
environment than holography. For these reasons, ESPI has become a powerful technique used in
many academic researches and engineering applications. Since ESPI used video recording and
display, its real-time nature makes it practical for vibration measurement. ESPI can be applied to
determine the resonant frequencies and to visualize the mode shapes of vibrating objects.
The most widely used experimental set-up to study dynamic responses by ESPI is the time-

averaged vibration ESPI method [3]. The disadvantage of this method is that the interferometric
fringes represent the amplitude but not the phase of the vibration. To improve the shortcoming,
the phase-modulation method that used the reference beam modulation technique was developed
by L /okberg and Hogmoen [4] and Hurden [5] to determine the relative phase of the displacement.
Shellabear and Tyrer [6] used ESPI to make three-dimensional vibration measurements. Three
different illumination geometries were constructed, and the orthogonal components of vibration
amplitude and mode shape were determined. For the purpose of reducing the noise coming from
the environment, the subtraction method was developed by Creath et al. [7] and Pouet et al. [8].
The difference of the subtraction method compared with the time-averaged method is that the
reference frame is first recorded before vibration and is continuously subtracted from the
incoming frames after vibration. However, the interferometric fringe visibility of the subtraction
method is not good enough for quantitative measurement of surface displacement. In order to
increase the visibility of the fringe pattern and reduce environmental noise simultaneously, an
amplitude-fluctuation ESPI (AF-ESPI) method was proposed by Wang et al. [9] for out-of-plane
vibration measurement. In the AF-ESPI method, the reference frame is recorded in a vibrating
state and subtracted from the incoming frame. Consequently, it combines the advantages of the
time-averaged and subtraction methods, i.e., good visibility and noise reduction. Ma and Huang
[10,11] used the AF-ESPI method to investigate the three-dimensional vibrations of piezoelectric
rectangular parallelepipeds and cylinders. Both the resonant frequencies and mode shapes were
presented and discussed in details.
Thin plates have been extensively used as structural elements in many industrial applications.

The investigation of the vibration of plates dates back to the 19th century. There had been a great
amount of research and literature presented over the last century [12]. The problem of free
vibration of a circular plate was first investigated by Poisson [13]. Rayleigh [14] presented the well-
known general method of solution to determine the resonant frequencies of vibrating structures.
This method was improved by Ritz [15] by assuming a set of admissible trial functions. This
approach is one of the most popular approximate methods for vibration analysis. There have been
extensive studies of the vibration of plates for various shapes, boundary and loading conditions
for nearly two centuries. The interested readers are referred to the excellent reviews of Leissa [16]
and Liew et al. [17] of this class of problems and lists of references.
The study of the vibration behaviour of a plate is a problem of great practical interest and most

of the published works are analytical and numerical results. There are very few experimental
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results available, especially for the full-field measurement of mode shapes. Model testing using
pointwise measurement techniques (accelerometers or laser Doppler vibrometers) is commonly
used in conjunction with spectrum analyzers and modal analysis software to characterize the
vibration behaviour of plates. These pointwise techniques have suffered from irregular mode
shape estimation as a result of the lengthy data acquisition period. In this paper, we employ an
optical method based on the AF-ESPI to study experimentally the resonant characteristics
(resonant frequencies and mode shapes) for isotropic square plates with different boundary
conditions. The advantage of using the AF-ESPI method is that both resonant frequencies and the
corresponding mode shapes can be obtained simultaneously. The fringe patterns shown in the
experiment correspond to the vibrating mode shapes. Furthermore, it is very convenient to study
small objects because no contact is required compared to classical modal analysis using
accelerometers. Two cases are studied which involve the possible combinations of free and
clamped edge conditions. They are free–free–free–free (FFFF) and clamped–clamped–clamped–
clamped (CCCC) plates. Because the proposed AF-ESPI optical method is faster in operation and
insensitive to environment, a lot of excellent experimental vibration mode shapes are provided in
this paper. There are 27 modes and 12 modes presented for FFFF and CCCC plates, respectively.
The complete free (FFFF) case has a rich history in the vibration analysis literature. Ritz [15]
analyzed the complete free problem to demonstrate the method provided by him for obtaining
vibration frequencies. Due to the simplicity of the boundary condition, the completely clamped
(CCCC) case is usually used as a test problem for analytical methods. In addition to the AF-ESPI
experimental technique, numerical computations based on a finite element package are also
presented, and good agreements are found in comparison with experimental results.

2. AF-ESPI method for transverse vibration measurement

The optical arrangement for out-of-plane vibrating measurement by AF-ESPI system is shown
schematically in Fig. 1. If the image of the specimen is taken before vibration, the light intensity
detected by a CCD camera can be expressed by time-averaged method as

I0 ¼
1

t

Z t

0

ðIA þ IB þ 2
ffiffiffiffiffiffiffiffiffi
IAIB

p
cosfÞ dt ¼ IA þ IB þ 2

ffiffiffiffiffiffiffiffiffi
IAIB

p
cosf; ð1Þ

where IA is the object light intensity, IB the reference light intensity, t the CCD refreshing time,
and f is the phase difference between object and reference light.
Assuming that the specimen vibrates periodically, the light intensity taken by a CCD camera

can be represented as

I1 ¼
1

t

Z t

0

IA þ IB þ 2
ffiffiffiffiffiffiffiffiffi
IAIB

p
cos fþ

2p
l
ð1þ cos yÞA cosot

� �� �
dt; ð2Þ

where l is the wavelength of laser, y the angle between object light and observation direction, A

the vibration amplitude, and o is the angular frequency.
Let G ¼ 2p=lð1þ cos yÞ and assume that the vibration period is much shorter than the CCD

refresh time (i.e., tb2p=o). Then Eq. (2) can be worked out as

I1 ¼ IA þ IB þ 2
ffiffiffiffiffiffiffiffiffi
IAIB

p
ðcosfÞJ0ðGAÞ; ð3Þ
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where J0 is a zero order Bessel function of the first kind. When these two images (I0 and I1) are
subtracted and rectified by the image processing system, i.e., subtract Eq. (1) from Eq. (3), the
resulting image intensity can be expressed as

I ¼ I1 � I0 ¼ 2
ffiffiffiffiffiffiffiffiffi
IAIB

p
jðcosfÞ½J0ðGAÞ � 1�j: ð4Þ

The light intensity of the image shown in Eq. (4) is called the subtraction method, and the
reference image is recorded before vibration.
Instead of using the subtraction method, the AF-ESPI method is employed in this study by

taking two images while the specimen vibrates and assuming that the vibration amplitude of the
second image has changed from A to A þ DA: The light intensity of the second image will be

I2 ¼
1

t

Z t

0

fIA þ IB þ 2
ffiffiffiffiffiffiffiffiffi
IAIB

p
cos½fþ GðA þ DAÞ cosot�g dt: ð5Þ

Expanding Eq. (5) by using Taylor series and neglecting higher order terms one obtain

I2 ¼ IA þ IB þ 2
ffiffiffiffiffiffiffiffiffi
IAIB

p
ðcosfÞ½1� 1

4
G2ðDAÞ2�J0ðGAÞ ð6Þ

When these two images (I1 and I2) are subtracted and rectified by the image processing system,
i.e., subtracting Eq. (3) from Eq. (6), the resulting image intensity can be expressed as

I ¼ I2 � I1 ¼

ffiffiffiffiffiffiffiffiffi
IAIB

p
2

ðcosfÞG2ðDAÞ2J0ðGAÞ
�� ��: ð7Þ

Compared with the subtraction method where the reference image is taken at stress-free state,
the reference image is recorded and subtracted at the vibrating state by the AF-ESPI method. As
indicated in Eqs. (4) and (7), the dominant function of the AF-ESPI method is jJ0ðGAÞj and that of
the subtraction method is jJ0ðGAÞ � 1j: Because of the discrepancy between the dominant
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Fig. 1. Schematic layout of the experimental ESPI set-up for out-of-plane displacement measurement.
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functions, the nodal lines of vibrating interferometric patterns obtained by AF-ESPI method are
the bright fringes and those by subtraction method are the dark fringes. This characteristic of AF-
ESPI can be used for qualitative observation or for quantitative analysis for the fringe patterns.
Furthermore, the sensitivity and fringe visibility of the AF-ESPI method are better than that of
the subtraction method. It can be verified that the number of fringes presented by the AF-ESPI
method is about twice that by the subtraction method for the same exciting force. In addition to
the theory of out-of-plane measurement already mentioned, the in-plane vibration measurement
by AF-ESPI method can also be derived in a similar way. By using the AF-ESPI method
accompanied with the out-of-plane optical set-up, we can completely catch the full-field vibration
characteristics of resonant frequencies and mode shapes at the same time.

3. Experimental and numerical results

Two isotropic aluminium thin plates (6061T6) are used in this study for experimental
investigations and numerical calculations. The material properties of the plate are mass density
r ¼ 2700 kg/m3, Young’s modulus E ¼ 70GPa and the Poisson ratio n ¼ 0:33: By using the
combinations of free (F) and clamped (C) edges, the resonant frequencies and mode shapes of
FFFF and CCCC plates are investigated. The geometric dimensions of two plates with different
boundary conditions are shown in Fig. 2. The thickness of two isotropic plates is all 1mm.
The schematic layout of a self-arranged out-of-plane AF-ESPI optical system as shown in Fig. 1

is employed to perform the vibration measurement for the resonant frequency and the
corresponding mode shape. As shown in Fig. 1, a continuous He–Ne laser (30mW power) with
wavelength l ¼ 632:8 nm is used as the coherent light source. The laser beam is divided into two
parts, the reference and object beam, by a beamsplitter. We use a CCD camera (Pulnix company)
and a P360F (Dipix Technologies Inc.) frame grabber with DSP on board to record and process
the images. The object beam travels to the specimen and then reflects to the CCD camera. The
reference beam goes directly to the CCD camera via a mirror and the reference plate. It is
important to note that the optical path length and the light intensities of these two beams should
remain identical in the experimental set-up. The CCD camera converts the intensity distribution of
the interference pattern of the object into a corresponding video signal at 30 frames per second.
The signal is electronically processed and finally converted into an image on the video monitor.
The interpretation of the fringe image is similar to reading of a contour map. In order to increase
the intensity of light reflection of specimens and the contrast of fringe patterns, the surfaces of these
plates are coated with white paint, which is mixed with fine seaweed powder.
The isotropic plate is excited to resonance by a piezostack actuator (PI company), which is

attached by adhesive behind the specimen. The piezoelectric actuator is usually attached in the
centre of the specimen. However, if the nodal lines pass the centre of the specimen, then the
piezoelectric actuator is moved to another location. The specimen is placed on a sponge for
the FFFF case, the clamped sides of the CCCC plate are mounted with nine holes and are
assumed to be fixed. To achieve the sinusoidal excitation input, a function generator HP33120A
(Hewlett Packard) connected to a power amplifier (NF corporation) is used.
The experimental procedure of the AF-ESPI technique is performed as follows. First, a

reference image is taken after the plate vibrates, then the second image is taken, and the reference
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image is subtracted by the image processing system. If the vibrating frequency is not the resonant
frequency, only randomly distributed speckles are displayed and no fringe patterns will be shown.
However, if the vibrating frequency is in the neighbourhood of the resonant frequency, stationary
distinct fringe patterns will be observed by the operator. Then the function generator is carefully
and slowly turned; the number of fringes will increase and the fringe pattern will become clearer as
the resonant frequency is approached. From the aforementioned experimental procedure, the
resonant frequencies are recorded from the electronic counter and the corresponding mode shapes
are observed by fringe patterns using the AF-ESPI optical system. The accuracy of the resonant
frequency is given by the accuracy of the function generator and also by the skill of the user.
Numerical results of resonant frequencies and mode shapes are calculated by using the

commercially available software, ABAQUS finite element package [18]. The eight-noded two-
dimensional quadrilateral thick shell element (S8R5) with 20� 20 finite element meshes and
reduced integration scheme are used to analyze the problem. This element approximates the
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Fig. 2. Geometric dimension and configuration of isotropic square plates.
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Midlin-type element that accounts for rotary inertia effects and first order shear deformations
through the thickness.
The results presented in Tables 1 and 2 show generally good agreement between the numerically

predicted and experimentally measured resonant frequencies. The resonant frequencies ranged
from 494 to 13,400Hz for the FFFF plate and ranged from 1078 to 8964Hz for the CCCC plate.
The error in resonant frequency prediction is given by

%Error ¼
ftheory � fexp

ftheory

100%:

The percentage differences between the experimental data and the analytical results are also
shown in Tables 1 and 2. The worst error is 5.8% and the average error in the results is 2.8%. All
the experimental measured frequencies are lower than the numerical ones. The errors are probably
due to thickness variations across the plates, the material property measurement, the weight of the
PZT actuator, the finite element approximation method and the clamped boundary condition of
the plate.
The resonant frequency f is also expressed in terms of a non-dimensional frequency parameter

l2 given by

l2 ¼ 2pfL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12r 1� n2

	 

Eh2

s
;

where L is the length and h is the thickness of the square plate. Figs. 3 and 4 show the relation of
non-dimensional resonant frequency and mode number for square plates with different boundary
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Table 1

Comparison of theoretical predicted resonant frequencies with experimental results for the FFFF plate

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14

AF-ESPI (Hz) 494 735 890 1271 2330 2345 2630 2930 3895 4402 4630 4920 5654 5934

FEM (Hz) 510 745 945 1324 2357 2424 2634 2974 4021 4499 4731 5048 5827 6163

Error (%) 3.1 1.3 5.8 4.0 1.1 3.3 1.5 1.5 3.1 2.2 2.1 2.5 3.0 3.7

Mode 15 16 17 18 19 20 21 22 23 24 25 26 27

AF-ESPI (Hz) 6294 7400 7550 8104 9290 10560 10790 10920 11100 11160 12440 12780 13400

FEM (Hz) 6458 7628 7810 8221 9296 10709 11125 11267 11342 11403 12857 13206 13858

Error (%) 2.5 3.0 3.3 1.4 0.6 1.4 3.0 3.1 2.1 2.1 3.2 3.2 3.3

Table 2

Comparison of theoretical predicted resonant frequencies with experimental results for the CCCC plate

Mode 1 2 3 4 5 6 7 8 9 10 11 12

AF-ESPI (Hz) 1078 2181 3211 3904 3925 4872 6198 6485 7085 7190 8553 8964

FEM (Hz) 1099 2240 3300 4011 4030 5025 6408 6691 7362 7393 8997 9385

Error (%) 1.9 2.6 2.7 2.7 2.6 3.0 3.3 3.1 3.8 2.7 4.9 4.5
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conditions. Since the weight of the specimen increases slightly by the attached actuator and the
clamped edge in experiment is not as rigid as the theoretical assumption, the resonant frequencies
obtained from experimental measurement turn out to be lower than the numerical results.
Figs. 5 and 6 are the mode shapes for both experimental measurements and numerical

simulations. There are 27 modes and 12 modes presented for FFFF and CCCC plates,
respectively. For the finite element calculations, the contours of constant displacement
for resonant mode shapes are plotted in order to compare with the experimental observation.
In Figs. 5 and 6, we indicate the phase of displacement in finite element results as solid or dashed
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line, the solid lines are in the opposite direction to the dashed lines. The transition from solid lines
to dashed lines corresponds to a zero displacement line, or nodal line. The zero order fringe, which
is the brightest on the experimental image represents the nodal lines of the vibrating square plate
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at resonant frequencies. The rest of the fringes are contours of constant amplitudes of
displacement. Excellent quality of the experimental fringe patterns for vibration mode shapes are
presented in Figs. 5 and 6. The mode shapes obtained by experimental results can be checked by
the nodal lines and fringe patterns with the numerical finite element calculations and excellent
agreements are found.
Due to the symmetry of the geometric configuration of the isotropic square plate and the

boundary condition, there may be two possible mode shapes at the same resonant frequency. If
the plate is excited at this frequency, a linear combination of these modes will be obtained in
experimental observation and it is not possible to define uniquely the mode shape of the vibration.
The precise nature of the mode produced in experiment depending on the position and method of
excitation. There are a few examples for this case, for instance modes 4, 5, 9, 12, 16, etc., in the
FFFF plate. A detailed discussion of this phenomenon was provided by Leissa [12].
It is noted that, for high-frequency modes, there may be cases of mode skipping and switching.

A comparison of the resonant frequencies of composite laminated plates obtained by using the
classical plate theory and the third order shear deformation theory were presented by Hadian and
Nayfeh [19]. They found that, as the mode number increases, the resonant frequency obtained by
using the classical plate theory deviates from that obtained by the high order shear deformation
theory. The switching for high-frequency modes was observed experimentally by Oh an Nayfeh
[20] for investigation the vibration of a cantilever six-layer laminated graphite-epoxy composite
plate. They explained the switching in the high order modes may be due to neglecting higher order
shear deformations. However, we do not find any mode switching or skipping in this study, the
sequence of all the modes calculated from the finite element simulation is the same as that
obtained by the experimental observation.

4. Conclusions

Optical techniques have been shown to have certain advantages for vibration analysis and ESPI
has been applied to many vibration problems. The advantages of the optical ESPI method include
the full-field measurement, real-time observation, submicron sensitivity, validity of both static
deformation and dynamic vibration, and direct digital image output. Moreover, no equipment,
transducer or sensor, needs to be attached to the plate in order to record the vibration. This
method can be applied to many cases within a range of displacements between tens of nanometers
and tens of micromters. Because ESPI uses video recording and display, it works in real time to
measure dynamic displacement, which enables implementation of this technique for vibration
measurement.
The vibration behaviour of isotropic plates are well-understood theoretically with computa-

tional results and data stretching back many years. However, there are only very few experimental
results available in the literature, especially for the full-field measurement of vibration mode
shapes. If the plate is thin, then it displays large transverse (out-of-plane) motion compared to any
possible in-plane components. A self-arranged AF-ESPI optical set-up with good fringe visibility
and noise reduction has been used in this study to obtain the resonant frequencies and the
corresponding mode shapes of free vibration of isotropic square plates at the same time.
Compared with the spectrum analysis or modal analysis method, AF-ESPI is more convenient in
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experimental operation. Two different types of boundary conditions are investigated in this study
and about forty excellent quality of mode shapes are generated using the experimental optical
interferometry method. Numerical calculations of resonant frequencies and mode shapes based on
a finite element package are also performed and excellent agreements are obtained when
compared with experimental measurements. It is noted that experimental frequencies obtained are
typically lower than theoretical ones because one cannot get perfectly rigid clamping
experimentally. The results shown in this study demonstrate that the AF-ESPI method is
applicable to many situations in engineering vibration analysis as long as the vibration amplitude
reaches the sensitivity of AF-ESPI method.
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